My Cart

Close

DNA | Health

 

NORDIC LAB

R 3,950.00

"JOINCIRCLES enables you to own your own medical data. When your results are ready, I will contact you and we can set a time to go through your results together - this session is included in the price of the test. From there, we can decide which of the healthcare practitioners in our 'Practitioner Circle' who have been trained to interpret these tests, you might need/want to see next. Once you have a plan from your practitioner/s, you can come back and shop your personalised daily nutrition, environment and lifestyle choices. As the medical director, please contact me if you need help choosing the right test and/or practitioner for your needs". Dr Heidi | drheidi@joincircles.com

Your DNA holds a wealth of invaluable information about your health and can tell you everything from whether you’re lactose intolerant to if you are at risk for potential DNA damage. Knowing how useful this can be this, we believe we should all have intimate knowledge of our unique genetic makeup. 

We believe that more medical info can be more useful than less. Combining our genetic tests to best suit your needs gives you more info in one go, plus works out more cost effective than doing the individual panels.

Armed with this invaluable information, you can begin to eliminate future health risks by carefully planning a personalised life-long diet, exercise, supplement and general well-being plan that works to prevent the diseases to which you most are susceptible.

8 Key areas

The 8 key areas that could potentially lead to lifestyle-related chronic diseases that this test looks at are:

  • Lipid and cholesterol metabolism
  • DNA methylation and risk for cancer (related to methylation)
  • Detoxification
  • Inflammation
  • Oxidative stress
  • Insulin sensitivity and risk for diabetes
  • Vitamin D receptor status
  • Bone health and potential risk for osteoporosis
  • Food responsiveness and sensitivity including lactose intolerance, caffeine processing, blood pressure risk due to salt intake, and iron overload disorders

Benefits of DNA | Health

  • Identifies risky ‘misspellings’ in your DNA* and how to combat them with nutritional, environmental and lifestyle support.
  • Provides detailed information on the unique nutrients, vitamins and minerals your body needs to help support and compensate for these genetic misspellings.
  • Suggests whether you can reduce your cholesterol via diet or whether medication will work better for you.
  • Reports your ability to methylate and how best to support this process.
  • Tells you how susceptible you are to the effects of certain toxins and carcinogens in your diet – ‘toxins’ can include alcohol**.
  • Shows your potential for inflammation and oxidative stress.
  • Reports the status of your vitamin D receptor – this might indicate that you need to test for vitamin D (blood test is called: vitamin D 25-OH) more frequently and whether you might need more vitamin D3 supplement support.
  • Results show:
    • your potential for osteoporosis.
    • Your potential for blood sugar and insulin-related issues.
    • Your ability to break down and use lactose, caffeine, salt, polyunsaturated fat metabolism, and iron overload.

*’Genetic misspellings’ related to the only genes covered in this DNA | Health panel.

**This test only gives info about your potential to detox alcohol in a certain time frame and not whether you have the potential to be an alcoholic.

Comments

"DNA | Health looks at key genes involved in seven key biological processes of chronic illness. DNA | Health gives you a starting point for gene-based personalised nutrition. By gaining insight into your genes’ influence on essential biological processes, you can focus your attention and possible treatment strategies on alleviating, neutralising, and even counteracting the negative effects of certain genetic variations ('misspellings').

Many chronic illnesses are preventable through the correct diet, environment and lifestyle choices. Nutritional genomics explores the relationship between your diet and your genes. These interactions have far-reaching potential in preventing food-related disease. For example, the test results could show whether you have genetic variations that could lead to increased inflammation, increased oxidative stress, increased insulin sensitivity, a faulty vitamin D receptor, and a decreased ability to methylate (methylation helps protect your DNA) and detox.

This combo could load the gun for cancer. You might then pull the trigger unknowingly with your food, environment and lifestyle choices. The test results provide individual recommendations that include dietary goals for relevant foods, phytochemicals, vitamins, minerals, environmental and lifestyle choice changes. 

Before you buy this test, look at our DNA test combos - they work out to be more cost-effective than buying each test separately". 

Dr. Heidi

    Genes Analysed

    Blood Lipids Metabolism (including cholesterol)

    Heart health depends on a complex balance of environmental, dietary and genetic factors. While you may have heard that eating less red meat and fatty foods will help lower cholesterol, this may not necessarily be true for your body. Certain genes influence LDL (‘bad’) and HDL (‘good’) cholesterol, and knowing how the fat in your diet interacts with your genes, will give you a much better understanding of how to change your diet to achieve good heart health.

    • LPL: Removes lipids from the circulation of hydrolysing triglycerides into free fatty acids.
    • CETP: Plays a key role in the metabolism of HDL and mediates the exchange of lipids between lipoproteins.
    • APOC3: Plays an important role in cholesterol metabolism.
    • APOE: Essential for the normal catabolism of triglyceride-rich lipoprotein constituents. Affects antioxidant requirement.
    • PON1: Protects LDL and HDL from oxidation. Low PON activity has been associated with increased risk for coronary artery disease.

    Methylation

    B vitamins, especially folate, play an essential role in energy metabolism, building and repairing DNA, and in preventing cardiovascular disease, cancer, and neural tube defects. Most people need very small doses of B vitamins, but variations in your genes can alter how efficiently your body uses these vitamins, and if this is the case, you may need to increase your daily dose.

    • MTHFR: Directs folate from the diet either to DNA synthesis or homocysteine remethylation.
    • MTR: Catalyses the re-methylation of homocysteine to methionine.
    • COMT: Catalyses the transfer of a methyl group from S-adenosylmethionine to catecholamines, including the neurotransmitters dopamine, epinephrine, and norepinephrine.
    • MTRR: Catalyses methylcobalamin, which is essential for maintaining adequate intracellular pools of methionine. It is also responsible for maintaining homocysteine concentrations at non-toxic levels.
    • CBS: Catalyses the conversion of homocysteine to cystathionine and is directly involved in the removal of homocysteine from the methionine cycle.

    Detoxification

    Detoxification is complex. There are many genes that play a role in the cleansing process, and if you have a gene variation in any one of these sequences, your body may need help when it comes to detoxing. The only way to know for sure is through DNA | Health, which will provide you with valuable information such as whether you need to be eating more cruciferous vegetables or taking extra supplements to aid your body’s natural detoxification processes.

    • CYP1A1: The cytochrome P450 enzyme converts environmental procarcinogens to reactive intermediates, which are carcinogenic.
    • GSTM1: Influences Phase II detoxification. It is responsible for the removal of xenobiotics, carcinogens, and products of oxidative stress.
    • GSTP1: Influences the metabolism of many carcinogenic compounds.
    • GSTT1: A member of a superfamily of proteins that catalyse the conjugation of reduced glutathione.
    • NQO1: Quinone Reductase is primarily involved in the detoxification of potentially mutagenic and carcinogenic quinones derived from tobacco smoke, diet and estrogen metabolism.

    Inflammation

    Inflammation is the way our body responds to injury, infection or injuries. Our genes switch the inflammation process on and off as needed, but sometimes a genetic variation causes a gene to stay switched on for longer than required. Low-grade inflammation over a long period has been linked to cardiovascular disease, obesity and diabetes. DNA | Health will tell you if your body’s immune processes are running when not needed, and we can then recommend certain nutrients to help “switch off” these genes.

    • IL-6: Plays a crucial role in inflammation by regulating the expression of the C-reactive protein (CRP).
    • TNF-A: TNFα is a proinflammatory cytokine, secreted by both macrophages and adipocytes, which has been shown to alter whole-body glucose homoeostasis, and has been implicated in the development of obesity, obesity-related insulin resistance, and dyslipidemia.
    • IL-1: This gene forms part of the inflammatory cascade and therefore genetic variations to this gene have been associated with increased risk for a number of chronic diseases.

    Antioxidant Status

    Antioxidants are the body’s defence against free radicals. Free radicals are a normal by-product of the body’s energy processes. However, these molecules can damage DNA and proteins in the body and have been linked to various chronic diseases. Antioxidants are found naturally in the body in the form of enzymes, but can also be consumed in a wide variety of foods. DNA | Health will tell you whether you should be altering your diet and lifestyle in order to boost the antioxidant activity in your body.

    • eNOS: Influences vascular tone and peripheral vascular resistance. It also has vasoprotective effects by suppressing platelet aggregation, leukocyte adhesion, and smooth muscle cell proliferation.
    • MnSOD/SOD2: Has vital anti-oxidant activity within the cell, especially within the mitochondria. It destroys the radicals that are normally produced within cells.
    • CAT: The gene encodes the antioxidant enzyme, catalase. This enzyme is responsible for the rapid conversion of hydrogen peroxide molecules to water and oxygen. Decreased CAT activity can lead to increased oxidative stress.
    • GPX1: Plays an important antioxidant role in almost every tissue in the body. Genetic variations have been linked to a disturbance in the antioxidant balance with increased risk for chronic disease.

    Bone Health

    Our bodies break down and rebuild bone all the time. Our genes, diet and lifestyle (including exercise, stress, smoking and alcohol consumption) are all important factors in this process. By identifying how your genes affect your body’s calcium and Vitamin D metabolism, you can change your diet and lifestyle to keep your bones strong. 

    • VDR: Has a profound influence on bone density.
    • COL1A1: Influences the ratio of collagen-alpha chains produced by bone cells, affecting bone mineralisation of bone and bone strength.

    Insulin Sensitivity

    In a healthy body, food is absorbed into the bloodstream in the form of sugars such as glucose. The hormone, insulin, is then released to enable glucose to move from the bloodstream into the cells to be stored or used for energy. However, if you suffer from insulin resistance, your body’s cells will not respond as effectively to insulin. According to researchers, insulin resistance may play an important role in many health conditions such as obesity, diabetes and heart disease. DNA | Health can tell you whether you suffer from insulin resistance and if so, how best to work around this health issue. 

    • PPARG: Involved in adipocyte differentiation. It is a transcription factor activated by fatty acids and is also involved in the regulation of glucose and lipid metabolism.
    • TCF7L2: Influences blood glucose homoeostasis – both insulin secretion and resistance.
    • FTO: Influences susceptibility to obesity and risk for type 2 diabetes.
    • SLC2A2: Facilitates glucose-induced insulin secretion and is involved in food intake and regulation.

    Food Responsiveness and Sensitivity

    There are certain nutrients and food components that affect us all in different ways. For instance, your friend may be able to down three glasses of milk in a row, while you’re left feeling bloated and tired after just looking at a cappuccino. New research means that we can now test specific genes to tell us more about how our bodies will respond to certain food components. DNA | Health does this by testing for issues such as lactose intolerance, polyunsaturated fat (PUFA) metabolism, caffeine sensitivity, salt sensitivity and iron overload.

    • MCM6: Associated with adult hypolactasia (lactose intolerance).
    • FADS1: Influences blood fat concentrations by affecting desaturase enzyme efficiency
    • CYP1A2: This detoxification enzyme influences the ability to metabolise caffeine.
    • ACE & AGT: Part of the renin-angiotensin system and response to salt.
    • TAS2R38: This gene encodes the taste receptor responsible for the sensitivity to bitter compounds. Genetic variations in this gene can influence food preferences.
    • ALDH2: This SNP/gene determines the activity of the enzyme ALDH2 and plays a role in blood acetaldehyde level after alcohol consumption.

    Iron Overload

    Hereditary hemochromatosis is a genetic disorder in which iron accumulates in the body, leading to iron overload. If you have this disorder, the amount of iron your body absorbs from the intestines is greater than the amount needed to replace losses. Since your body cannot naturally increase iron excretion, this extra iron accumulates.

    Severe symptoms and signs of iron overload include sexual dysfunction, heart failure, joint pains, liver cirrhosis, diabetes mellitus, fatigue and hypomelanotic pigmentation. That said, people who carry the genes for hereditary hemochromatosis often show no symptoms or signs, and early detection, which can be done via DNA | Health, is imperative for successful treatment.

    • HFE: Regulates iron absorption by regulating the interaction of the transferring receptor with transferrin. Hereditary hemochromatosis results from defects in the HFE gene.

    Test Sample Report 

    Pair with these Biochemistry Tests

    These DNA and/or biochemistry test/s can help you better understand your body so you can start to personalise your nutrition, environment and lifestyle choices and be healthier:

    HORMONES | Hormones & Hormone Metabolites | BIG

    HORMONES | Vitamin D Profile

    Test Type 

    DNA test

    Tests For

    DNA | Health: Gene variations associated with metabolic and biological processes, nutritional genomics and metabolism. 

    Sample Required 

    Buccal (cheek) lining swab

    Average Processing Time 

    18-21 days  

    Understanding genetics

    It may sound like something out of a sci-fi movie, but genetic testing is a powerful health tool that can give you a deep understanding of how your body works.

    At the heart of it is the molecule DNA. Every single cell in our bodies – from our heart to skin, blood and bone – contains a complete set of our DNA. This powerful molecule carries our genetic code and determines all manner of traits, from our eye colour to aspects of our personalities and, of course, our health. Interestingly, 99.9% of the DNA from two people is identical. It’s the other 0.1% of DNA code sequences that make us unique.

    What are genes?

    Genes are segments of DNA that contain the instructions your body needs to make each of the many thousands of proteins required for life. Each gene is comprised of thousands of combinations of ‘letters’ which make up your genetic code. The code gives the instructions to make the proteins required for proper development and function.

    What are gene variations?

    An example of a genetic variation is that one ‘letter’ may be replaced by another. These variations can lead to changes in the resulting proteins being made. For example, a ‘C’ may be changed to a ‘G’ at a point in the genetic code. When the variation affects only one genetic ‘letter’ it is called a Single Nucleotide Polymorphism, or SNP (pronounced “snip”). Variations can however also affect more than one ‘letter’. Genetic tests look at specific chromosomes, genes or proteins, and the variations that occur within them, to make observations about disease or disease risk, body processes or physical traits. 

    Are gene variations bad?

    In general, variations should not be considered good or bad. Rather, genetic variations are simply slight differences in the genetic code. The key is to know which form of the variation you carry so that you can make appropriate lifestyle choices. And that is the beauty of genetic testing. It can tell you more about the way you're built so that you can tailor your lifestyle to fit your biology. 

    The science behind your DNA | Health report

    Once we receive your DNA sample, we use a process called Polymerase Chain Reaction (PCR) to copy the DNA in your genes many times over, so that we have ample material with which to analyse your genetic material. We then look for unique DNA sequences in your genes, and if we spot changes from the norm, we mark those as risk factors. By looking at the full picture, including all the changes we find in your gene structure, as well as environmental factors, we can provide a holistic assessment of your health risks and provide advice on how to reduce these risks.

    Back To DNA Tests

    Hello You!

    Join our mailing list